\(\int \frac {\sin ^2(c+d x)}{a+b \sin ^3(c+d x)} \, dx\) [191]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 240 \[ \int \frac {\sin ^2(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\frac {2 \arctan \left (\frac {\sqrt [3]{b}+\sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^{2/3}-b^{2/3}}}\right )}{3 \sqrt {a^{2/3}-b^{2/3}} b^{2/3} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt [3]{b}-\sqrt [3]{-1} \sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-(-1)^{2/3} a^{2/3}+b^{2/3}}}\right )}{3 \sqrt {-(-1)^{2/3} a^{2/3}+b^{2/3}} b^{2/3} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt [3]{b}+(-1)^{2/3} \sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\sqrt [3]{-1} a^{2/3}+b^{2/3}}}\right )}{3 \sqrt {\sqrt [3]{-1} a^{2/3}+b^{2/3}} b^{2/3} d} \]

[Out]

2/3*arctan((b^(1/3)+a^(1/3)*tan(1/2*d*x+1/2*c))/(a^(2/3)-b^(2/3))^(1/2))/b^(2/3)/d/(a^(2/3)-b^(2/3))^(1/2)-2/3
*arctanh((b^(1/3)+(-1)^(2/3)*a^(1/3)*tan(1/2*d*x+1/2*c))/((-1)^(1/3)*a^(2/3)+b^(2/3))^(1/2))/b^(2/3)/d/((-1)^(
1/3)*a^(2/3)+b^(2/3))^(1/2)-2/3*arctanh((b^(1/3)-(-1)^(1/3)*a^(1/3)*tan(1/2*d*x+1/2*c))/(-(-1)^(2/3)*a^(2/3)+b
^(2/3))^(1/2))/b^(2/3)/d/(-(-1)^(2/3)*a^(2/3)+b^(2/3))^(1/2)

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3299, 2739, 632, 210, 212} \[ \int \frac {\sin ^2(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\frac {2 \arctan \left (\frac {\sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )+\sqrt [3]{b}}{\sqrt {a^{2/3}-b^{2/3}}}\right )}{3 b^{2/3} d \sqrt {a^{2/3}-b^{2/3}}}-\frac {2 \text {arctanh}\left (\frac {\sqrt [3]{b}-\sqrt [3]{-1} \sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {b^{2/3}-(-1)^{2/3} a^{2/3}}}\right )}{3 b^{2/3} d \sqrt {b^{2/3}-(-1)^{2/3} a^{2/3}}}-\frac {2 \text {arctanh}\left (\frac {(-1)^{2/3} \sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )+\sqrt [3]{b}}{\sqrt {\sqrt [3]{-1} a^{2/3}+b^{2/3}}}\right )}{3 b^{2/3} d \sqrt {\sqrt [3]{-1} a^{2/3}+b^{2/3}}} \]

[In]

Int[Sin[c + d*x]^2/(a + b*Sin[c + d*x]^3),x]

[Out]

(2*ArcTan[(b^(1/3) + a^(1/3)*Tan[(c + d*x)/2])/Sqrt[a^(2/3) - b^(2/3)]])/(3*Sqrt[a^(2/3) - b^(2/3)]*b^(2/3)*d)
 - (2*ArcTanh[(b^(1/3) - (-1)^(1/3)*a^(1/3)*Tan[(c + d*x)/2])/Sqrt[-((-1)^(2/3)*a^(2/3)) + b^(2/3)]])/(3*Sqrt[
-((-1)^(2/3)*a^(2/3)) + b^(2/3)]*b^(2/3)*d) - (2*ArcTanh[(b^(1/3) + (-1)^(2/3)*a^(1/3)*Tan[(c + d*x)/2])/Sqrt[
(-1)^(1/3)*a^(2/3) + b^(2/3)]])/(3*Sqrt[(-1)^(1/3)*a^(2/3) + b^(2/3)]*b^(2/3)*d)

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2739

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[2*(e/d), Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> Int[ExpandTr
ig[sin[e + f*x]^m*(a + b*sin[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, e, f}, x] && IntegersQ[m, p] && (EqQ[n, 4]
|| GtQ[p, 0] || (EqQ[p, -1] && IntegerQ[n]))

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {1}{3 b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)\right )}+\frac {1}{3 b^{2/3} \left (-\sqrt [3]{-1} \sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)\right )}+\frac {1}{3 b^{2/3} \left ((-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)\right )}\right ) \, dx \\ & = \frac {\int \frac {1}{\sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)} \, dx}{3 b^{2/3}}+\frac {\int \frac {1}{-\sqrt [3]{-1} \sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)} \, dx}{3 b^{2/3}}+\frac {\int \frac {1}{(-1)^{2/3} \sqrt [3]{a}+\sqrt [3]{b} \sin (c+d x)} \, dx}{3 b^{2/3}} \\ & = \frac {2 \text {Subst}\left (\int \frac {1}{\sqrt [3]{a}+2 \sqrt [3]{b} x+\sqrt [3]{a} x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 b^{2/3} d}+\frac {2 \text {Subst}\left (\int \frac {1}{-\sqrt [3]{-1} \sqrt [3]{a}+2 \sqrt [3]{b} x-\sqrt [3]{-1} \sqrt [3]{a} x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 b^{2/3} d}+\frac {2 \text {Subst}\left (\int \frac {1}{(-1)^{2/3} \sqrt [3]{a}+2 \sqrt [3]{b} x+(-1)^{2/3} \sqrt [3]{a} x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 b^{2/3} d} \\ & = -\frac {4 \text {Subst}\left (\int \frac {1}{-4 \left (a^{2/3}-b^{2/3}\right )-x^2} \, dx,x,2 \sqrt [3]{b}+2 \sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 b^{2/3} d}-\frac {4 \text {Subst}\left (\int \frac {1}{-4 \left ((-1)^{2/3} a^{2/3}-b^{2/3}\right )-x^2} \, dx,x,2 \sqrt [3]{b}-2 \sqrt [3]{-1} \sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 b^{2/3} d}-\frac {4 \text {Subst}\left (\int \frac {1}{4 \left (\sqrt [3]{-1} a^{2/3}+b^{2/3}\right )-x^2} \, dx,x,2 \sqrt [3]{b}+2 (-1)^{2/3} \sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 b^{2/3} d} \\ & = \frac {2 \arctan \left (\frac {\sqrt [3]{b}+\sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^{2/3}-b^{2/3}}}\right )}{3 \sqrt {a^{2/3}-b^{2/3}} b^{2/3} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt [3]{b}-\sqrt [3]{-1} \sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-(-1)^{2/3} a^{2/3}+b^{2/3}}}\right )}{3 \sqrt {-(-1)^{2/3} a^{2/3}+b^{2/3}} b^{2/3} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt [3]{b}+(-1)^{2/3} \sqrt [3]{a} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\sqrt [3]{-1} a^{2/3}+b^{2/3}}}\right )}{3 \sqrt {\sqrt [3]{-1} a^{2/3}+b^{2/3}} b^{2/3} d} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 11.04 (sec) , antiderivative size = 231, normalized size of antiderivative = 0.96 \[ \int \frac {\sin ^2(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\frac {i \text {RootSum}\left [-i b+3 i b \text {$\#$1}^2+8 a \text {$\#$1}^3-3 i b \text {$\#$1}^4+i b \text {$\#$1}^6\&,\frac {2 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )-i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right )-4 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^2+2 i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^2+2 \arctan \left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^4-i \log \left (1-2 \cos (c+d x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^4}{b \text {$\#$1}-4 i a \text {$\#$1}^2-2 b \text {$\#$1}^3+b \text {$\#$1}^5}\&\right ]}{6 d} \]

[In]

Integrate[Sin[c + d*x]^2/(a + b*Sin[c + d*x]^3),x]

[Out]

((I/6)*RootSum[(-I)*b + (3*I)*b*#1^2 + 8*a*#1^3 - (3*I)*b*#1^4 + I*b*#1^6 & , (2*ArcTan[Sin[c + d*x]/(Cos[c +
d*x] - #1)] - I*Log[1 - 2*Cos[c + d*x]*#1 + #1^2] - 4*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^2 + (2*I)*Lo
g[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^2 + 2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^4 - I*Log[1 - 2*Cos[c + d
*x]*#1 + #1^2]*#1^4)/(b*#1 - (4*I)*a*#1^2 - 2*b*#1^3 + b*#1^5) & ])/d

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.81 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.32

method result size
derivativedivides \(\frac {4 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{3 d}\) \(76\)
default \(\frac {4 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{3 d}\) \(76\)
risch \(-\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (4096+\left (729 a^{2} b^{4} d^{6}-729 b^{6} d^{6}\right ) \textit {\_Z}^{6}+3888 b^{4} d^{4} \textit {\_Z}^{4}-6912 b^{2} d^{2} \textit {\_Z}^{2}\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\left (-\frac {243}{1024} b^{3} d^{5} a^{2}+\frac {243}{1024} b^{5} d^{5}\right ) \textit {\_R}^{5}+\left (-\frac {81 i a \,b^{3} d^{4}}{256}+\frac {81 i b^{5} d^{4}}{256 a}\right ) \textit {\_R}^{4}-\frac {81 b^{3} d^{3} \textit {\_R}^{3}}{64}+\left (-\frac {9 i a b \,d^{2}}{16}-\frac {9 i d^{2} b^{3}}{8 a}\right ) \textit {\_R}^{2}+\frac {9 b d \textit {\_R}}{4}+\frac {i b}{a}\right )\right )}{4}\) \(167\)

[In]

int(sin(d*x+c)^2/(a+b*sin(d*x+c)^3),x,method=_RETURNVERBOSE)

[Out]

4/3/d*sum(_R^2/(_R^5*a+2*_R^3*a+4*_R^2*b+_R*a)*ln(tan(1/2*d*x+1/2*c)-_R),_R=RootOf(_Z^6*a+3*_Z^4*a+8*_Z^3*b+3*
_Z^2*a+a))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.18 (sec) , antiderivative size = 25253, normalized size of antiderivative = 105.22 \[ \int \frac {\sin ^2(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate(sin(d*x+c)^2/(a+b*sin(d*x+c)^3),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F]

\[ \int \frac {\sin ^2(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\int \frac {\sin ^{2}{\left (c + d x \right )}}{a + b \sin ^{3}{\left (c + d x \right )}}\, dx \]

[In]

integrate(sin(d*x+c)**2/(a+b*sin(d*x+c)**3),x)

[Out]

Integral(sin(c + d*x)**2/(a + b*sin(c + d*x)**3), x)

Maxima [F]

\[ \int \frac {\sin ^2(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\int { \frac {\sin \left (d x + c\right )^{2}}{b \sin \left (d x + c\right )^{3} + a} \,d x } \]

[In]

integrate(sin(d*x+c)^2/(a+b*sin(d*x+c)^3),x, algorithm="maxima")

[Out]

integrate(sin(d*x + c)^2/(b*sin(d*x + c)^3 + a), x)

Giac [F]

\[ \int \frac {\sin ^2(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\int { \frac {\sin \left (d x + c\right )^{2}}{b \sin \left (d x + c\right )^{3} + a} \,d x } \]

[In]

integrate(sin(d*x+c)^2/(a+b*sin(d*x+c)^3),x, algorithm="giac")

[Out]

integrate(sin(d*x + c)^2/(b*sin(d*x + c)^3 + a), x)

Mupad [B] (verification not implemented)

Time = 14.79 (sec) , antiderivative size = 590, normalized size of antiderivative = 2.46 \[ \int \frac {\sin ^2(c+d x)}{a+b \sin ^3(c+d x)} \, dx=\frac {\sum _{k=1}^6\ln \left (-\frac {8192\,a^4\,\left (-729\,a^2\,b^3-81\,a^2\,b^2\,\mathrm {root}\left (d^6-27\,b^2\,d^4+243\,b^4\,d^2+729\,b^4\,\left (a^2-b^2\right ),d,k\right )+243\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a\,b^4+324\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a\,b^3\,\mathrm {root}\left (d^6-27\,b^2\,d^4+243\,b^4\,d^2+729\,b^4\,\left (a^2-b^2\right ),d,k\right )+162\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a\,b^2\,{\mathrm {root}\left (d^6-27\,b^2\,d^4+243\,b^4\,d^2+729\,b^4\,\left (a^2-b^2\right ),d,k\right )}^2+36\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a\,b\,{\mathrm {root}\left (d^6-27\,b^2\,d^4+243\,b^4\,d^2+729\,b^4\,\left (a^2-b^2\right ),d,k\right )}^3+3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,a\,{\mathrm {root}\left (d^6-27\,b^2\,d^4+243\,b^4\,d^2+729\,b^4\,\left (a^2-b^2\right ),d,k\right )}^4+972\,b^5+324\,b^4\,\mathrm {root}\left (d^6-27\,b^2\,d^4+243\,b^4\,d^2+729\,b^4\,\left (a^2-b^2\right ),d,k\right )-216\,b^3\,{\mathrm {root}\left (d^6-27\,b^2\,d^4+243\,b^4\,d^2+729\,b^4\,\left (a^2-b^2\right ),d,k\right )}^2-72\,b^2\,{\mathrm {root}\left (d^6-27\,b^2\,d^4+243\,b^4\,d^2+729\,b^4\,\left (a^2-b^2\right ),d,k\right )}^3+12\,b\,{\mathrm {root}\left (d^6-27\,b^2\,d^4+243\,b^4\,d^2+729\,b^4\,\left (a^2-b^2\right ),d,k\right )}^4+4\,{\mathrm {root}\left (d^6-27\,b^2\,d^4+243\,b^4\,d^2+729\,b^4\,\left (a^2-b^2\right ),d,k\right )}^5\right )}{{\mathrm {root}\left (d^6-27\,b^2\,d^4+243\,b^4\,d^2+729\,b^4\,\left (a^2-b^2\right ),d,k\right )}^5}\right )\,\mathrm {root}\left (729\,a^2\,b^4\,d^6-729\,b^6\,d^6+243\,b^4\,d^4-27\,b^2\,d^2+1,d,k\right )}{d} \]

[In]

int(sin(c + d*x)^2/(a + b*sin(c + d*x)^3),x)

[Out]

symsum(log(-(8192*a^4*(12*b*root(d^6 - 27*b^2*d^4 + 243*b^4*d^2 + 729*b^4*(a^2 - b^2), d, k)^4 + 324*b^4*root(
d^6 - 27*b^2*d^4 + 243*b^4*d^2 + 729*b^4*(a^2 - b^2), d, k) + 972*b^5 + 4*root(d^6 - 27*b^2*d^4 + 243*b^4*d^2
+ 729*b^4*(a^2 - b^2), d, k)^5 - 729*a^2*b^3 - 72*b^2*root(d^6 - 27*b^2*d^4 + 243*b^4*d^2 + 729*b^4*(a^2 - b^2
), d, k)^3 - 216*b^3*root(d^6 - 27*b^2*d^4 + 243*b^4*d^2 + 729*b^4*(a^2 - b^2), d, k)^2 - 81*a^2*b^2*root(d^6
- 27*b^2*d^4 + 243*b^4*d^2 + 729*b^4*(a^2 - b^2), d, k) + 243*a*b^4*tan(c/2 + (d*x)/2) + 3*a*tan(c/2 + (d*x)/2
)*root(d^6 - 27*b^2*d^4 + 243*b^4*d^2 + 729*b^4*(a^2 - b^2), d, k)^4 + 162*a*b^2*tan(c/2 + (d*x)/2)*root(d^6 -
 27*b^2*d^4 + 243*b^4*d^2 + 729*b^4*(a^2 - b^2), d, k)^2 + 36*a*b*tan(c/2 + (d*x)/2)*root(d^6 - 27*b^2*d^4 + 2
43*b^4*d^2 + 729*b^4*(a^2 - b^2), d, k)^3 + 324*a*tan(c/2 + (d*x)/2)*b^3*root(d^6 - 27*b^2*d^4 + 243*b^4*d^2 +
 729*b^4*(a^2 - b^2), d, k)))/root(d^6 - 27*b^2*d^4 + 243*b^4*d^2 + 729*b^4*(a^2 - b^2), d, k)^5)*root(729*a^2
*b^4*d^6 - 729*b^6*d^6 + 243*b^4*d^4 - 27*b^2*d^2 + 1, d, k), k, 1, 6)/d